An Integrated Hydrogeophysical Approach for Unsaturated Zone Monitoring Using Time Domain Reflectometry, Electrical Resistivity Tomography and Ground Penetrating Radar

Author:

Papadopoulos Alexandros1,Apostolopoulos George1,Kallioras Andreas1ORCID

Affiliation:

1. School of Mining and Metallurgical Engineering, National Technical University of Athens, 15772 Athens, Greece

Abstract

Continuous measurements of soil moisture in the deeper parts of the unsaturated zone remain an important challenge. This study examines the development of an integrated system for the continuous and 3-D monitoring of the vadose zone processes in a cost- and energy-efficient way. This system comprises TDR, ERT and GPR geophysical techniques. Their capacities to adequately image subsurface moisture changes with continuous and time-lapse measurements are assessed during an artificial infiltration experiment conducted in a characteristic urban site with anthropogenic fills and much compaction. A 3-D array was designed for each method to expand the information of a single TDR probe and obtain a broader image of the subsurface. Custom spatial TDR probes installed in boreholes made with a percussion drilling instrument were used for soil moisture measurements. Moisture profiles along the probes were estimated with a numerical one-dimensional inversion model and a standard calibration equation. High conductivity water used during all infiltration tests led to the detection of the flow by all techniques. Preferential flow was present throughout the experiment and imaged sufficiently by all methods. Overall, the integrated approach conceals each method’s weaknesses and provides a reliable 3-D view of the subsurface. The results suggest that this approach can be used to monitor the unsaturated zone at even greater depths.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3