Predicting the Inelastic Response of Base Isolated Structures Utilizing Regression Analysis and Artificial Neural Network

Author:

Al-Rawashdeh Mohammad,Yousef Isam,Al-Nawaiseh Mohammad

Abstract

Indeed, utilizing a base isolation system in RC structures can remarkably minimize the possibility of failure, particularly in seismic-prone countries. Despite that, the design of these structures is a long procedure that consists of choosing the appropriate isolator to optimize the nonlinear behavior of the superstructure. Moreover, the numerical simulations require huge computational effort when high accuracy is required. In recent decades, scientists and engineers have applied numerous estimation approaches such as multiple linear regression and artificial neural networks to decrease the required cost and time for daily design problems. Thus, this study's main objective is to solve the difficulty of rapid response prediction by using soft-computing techniques. Additionally, it aims to study the capability of multiple linear regression and artificial neural networks in estimating the seismic performance of base-isolated RC structures under earthquakes. A nonlinear response history analysis of four different lead rubber-bearing isolated RC structures will be performed in order to determine the responses of these structures. Subsequently, the prediction models will be developed using the responses of the structures as inputs for multiple linear regression and artificial neural networks. Lastly, the reliability of both estimation approaches in terms of the response of base-isolated structures will be investigated by comparing the prediction models' capability. In general, the results of the study show that artificial neural networks provide considerably better accuracy in estimating base-isolated structures compared to multiple linear regression, and their performance results in reliable prediction. Doi: 10.28991/CEJ-2022-08-06-07 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3