Artificial Intelligence Algorithm-Based Arrangement Optimization of Structural Isolation Bearings

Author:

Zou ZhongliangORCID,Yan Qiwu

Abstract

The determination of an isolation-bearing scheme usually depends on experience, and needs numerous iterative calculations, especially when considering many factors such as total cost of the scheme, various design indicators, eccentricity of stiffness center of isolation bearings and the center of gravity of superstructure, and so on. Moreover, during the usual optimization process, the isolation scheme is often limited in several kinds of sizes and fixed predetermined distribution of types of isolation bearings based on experience or trial calculations due to computational efficiency, which would make it incapable of exploring other possible schemes. In this paper, artificial intelligence technology is applied to optimize the layout of isolation bearings. Types of isolation bearings are predicted through a Convolutional Neural Network, and sizes of isolation bearings are optimized by Hunter–prey optimization algorithm to improve computational efficiency and optimal arrangements of bearings. To simplify the optimization process, an optimization objective function considering a seismic decrease coefficient, story drift ratio and total cost of isolation bearings is proposed. In this function, weight coefficients reflect significance of various factors during the optimization process. In order to investigate influence of different combinations of weight coefficients on the optimal layout, 12 groups of combinations of weight coefficients are designed and analyzed. The results show that the optimal layout method of isolation bearings based on the artificial intelligence algorithm has good convergence efficiency of optimization and makes it possible to search more practical isolation scheme with good performance. When focusing on total cost of bearings, the ideal weight coefficient of the total cost would be larger than 0.4. While the structural performance factors are mainly considered, the weight coefficient of the maximum story drift ratio or seismic decrease coefficient should be larger than 0.2. For factors that designers pay more attention to, the corresponding weight coefficient should be larger than others.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability model for key components of urban rail transit train based on improved hunter-prey optimization;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3