Comparative Study of Utilising Neural Network and Response Surface Methodology for Flexible Pavement Maintenance Treatments

Author:

Milad Abdalrhman AbrahimORCID,Majeed Sayf A.,Yusoff Nur Izzi Md.

Abstract

The use of Artificial Intelligence (AI) for the prediction of flexible pavement maintenance that is caused by distressing on the surface layer is crucial in the effort to increase the service life span of pavements as well as reduce government expenses. This study aimed to predict flexible pavement maintenance in tropical regions by using an Artificial Neural Network (ANN) and the Response Surface Methodology (RSM) for predicting models for pavement maintenance in the tropical region. However, to predict the performance of the treatment techniques for flexible pavements, we used critical criteria to choose our date from different sources to represent the situation of the current pavement. The effect of the distress condition on the flexible pavement surface performance was one of the criteria considered in our study. The data were chosen in this study for 288 sets of treatment techniques for flexible pavements. The input parameters used for the prediction were severity, density, road function, and Average Daily Traffic (ADT). The finding of regression models in (R2) values for the ANN prediction model is 0.93, while the (R2) values are (RSM) prediction model dependent on the full quadratic is 0.85. The results of two methods were compared for their predictive capabilities in terms of the coefficient of determination (𝑅2), the Mean Squared Error (MSE), and the Root Mean Square Error (RMSE), based on the dataset. The results showed that the prediction made utilizing ANN was very relevant to the goal in contrast to that made using the statistical program RSM based on different types of mathematical methods such as full quadratic, pure quadratic, interactions, and linear regression.

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3