Predictive Analysis of Azure Machine Learning for the Rheological Behaviour of Unaged and Polymer Modified Bitumen

Author:

Milad Abdalrhman, ,Zhen Xian Sia,Majeed Sayf A.,F. Ahmeda Abobaker G.,Bilema Munder,Aziz Memon Naeem,Elmesh Ahmed,Abu Salim Atef,alias Imran Latif Qadir Bux,Md Yusoff Nur Izzi, , , , , , , , ,

Abstract

Rheology can be defined as the primary measurement associated with bitumen flow and deformation characteristics. In the long term, DSR testing consumes a long time, expensive cost and skilled labour to operate equipment or machines in the laboratory. The complex modulus, G* and phase angle, δ, are essential parameters for characterising and predicting the rheological behaviour of unaged bitumen (UB) and polymer-modified bitumen (PMB) in the model. This study developed three regression models using Azure machine learning (AML) to predict the rheological behaviour of UB and PMB. There are three types of data used as input data to develop the regression model: temperature, frequency, and modified material content. Regression models were developed with three processes or steps that need to be prioritised: data collection, model preparation, and model validation. Algorithms used in model development are decision tree regression (DFR), boosted decision tree regression (BDTR) and linear regression (LR). The results show G* and δ values. The R<sup>2</sup> values in the G* and <em>δ</em> predictions obtained from the DFR models are 0.8199 and 0.9480, respectively. Moreover, the R<sup>2</sup> values in the G* and <em>δ</em> predictions obtained from the LR models are 0.4219 and 0.7836, respectively.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3