Mechanical Behavior of Concrete Reinforced with Waste Aluminium Strips

Author:

Channa Imran Ali,Saand Abdullah

Abstract

The main objective of this research work is to investigate the influence of the addition of waste materials, like aluminium waste material, Soft Drink Tin Fibers (SDTF) or soft tins to improve mechanical properties of concrete and also study the strength behavior of concrete, such as flexural strength and indirect or split tensile strength. It has been acknowledged that the use of fibers in concrete has considerable effects to improve strength parameters and characteristics of concrete. In this research work, similar efforts are made to present the effects of soft tin fibers or aluminium waste material as a reinforcing material in concrete and to assess the mechanical behavior of concrete. Particularly, this research work aimed to investigate experimentally the effect of soft drink tins on tensile (cylinder splitting tensile strength) and flexural strength. Soft tin fibers of 25.4  5  0.5 mm in size were used and added from 1 to 5% by the weight of cement with the design mix of 1:1.624:2.760 at 0.50 w/c ratio. Therefore, 6 batches (every batch contained 3 prisms and 3 cylinders) were prepared and cast for evaluation of tensile and flexural strength. One batch was cast without inclusion of fibers (controlled batch) and remaining 5 batches were cast with the addition of fibers using 1, 2, 3, 4, and 5% respectively. It was revealed from obtained results that split tensile strength and flexural strength of specimen increases as compared to controlled batch up to 4% addition of fibers. Moreover, beyond 4% soft drink tin fiber level, strength begins to fall down. Thus, it can be suggested that mechanical properties of concrete can be enhanced by 4% of soft drink tin fibers. Moreover, in this study, soft drink tin fibers (SDTF) or aluminium waste are used as the application of utilization of waste materials as a partial construction material and also on another side it controls the solid waste and environmental pollution. Doi: 10.28991/cej-2021-03091718 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3