Performance Evaluation of Fiber-reinforced Ferroconcrete using Response Surface Methodology

Author:

Awolusi Temitope F.,Ekhasomhi Alenoghena I.,Aluko Oluwatobi G.,Akinkurolere Olanike O.,Azab Marc,Deifalla Ahmed Farouk

Abstract

Fibre-reinforced ferroconcrete is a new-generation type of concrete that has been found to have adequate performance. Global emissions of CO2 as a result of concrete production have damaged the earth's atmosphere. These emissions, together with construction waste, such as ceramic powder and aluminium waste, are considered one of the most harmful wastes to the environment, eventually leading to pollution. In this study, the fibre-reinforced ferroconcrete (FRFC) contained waste aluminium fibre, cement, ceramic waste powder, corrugated wire mesh, and fine and coarse aggregate. The cement content in the concrete mix was partially replaced with Ceramic Powder (CP) in proportions of 0%, 10%, and 20%, while the Aluminum Fibers (AF) were added in proportions 0, 1, and 2% to the concrete mix. The variation of ceramic powder and aluminium fibres was done using the central composite design of Response Surface Methodology (RSM) to create experimental design points meant to improve the fibre-reinforced ferroconcrete's mechanical performance. The results conclude that the mechanical performance of the FRFC was slightly improved more than conventional concrete, where at 20% replacement of ceramic powder and 1% addition of aluminium fibre to the concrete mix. There was more compressive, flexural, and split tensile strength increase than conventional concrete, with control concrete having strengths of 13.060, 5.720, and 3.110 N/mm2 and ferroconcrete 15.88, 6.68, and 3.83 N/mm2 respectively. This was further confirmed with microstructural images. The RSM model, with parameters such as; contour plots, analysis of variance, and optimisation, was used to effectively predict and optimise the responses of the ferroconcrete based on the independent variables (Aluminum fibre and Ceramic Powder) considered. The results of the predicted data show a straight-line linear progression as the coefficient of determination (R2) tends to 1, indicating that the RSM model is suitable for predicting the response of the variables on the FRFC. Doi: 10.28991/CEJ-2023-09-04-014 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3