Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment

Author:

Onyelowe Kennedy C.,Ebid Ahmed M.,Mahdi Hisham A.,Riofrio Ariel,Eidgahee Danial Rezazadeh,Baykara Haci,Soleymani Atefeh,Kontoni Denise-Penelope N.,Shakeri Jamshid,Jahangir Hashem

Abstract

Frequent laboratory needs during the production of concrete for infrastructure development purposes are a factor of serious concern for sustainable development. In order to overcome this trend, an intelligent forecast of the concrete properties based on multiple data points collected from various concrete mixes produced and cured under different conditions is adopted. It is equally important to consider the impact of the concrete components in this attempt to take care of the environmental risks involved in this production. In this work, 192 mixes of an ultra-high-performance lightweight concrete (UHPLC) were collected from literature representing different mixes cured under different periods and laboratory conditions. These mix proportions constitute measured variables, which are curing age (A), cement content (C), fine aggregate (FAg), plasticizer (PL), and rice husk ash (RHA). The studied concrete property was the unconfined compressive strength (Fc). This exercise was necessary to reduce multiple dependence on laboratory examinations by proposing concrete strength equations. First, the life cycle assessment evaluation was conducted on the rice husk ash-based UHPLC, and the results from the 192 mixes show that the C-783 mix (87 kg/m3 RHA) has the highest score on the environmental performance evaluation, while C-300 (75 kg/m3 RHA) with life cycle indices of 289.85 kg CO2eq. Global warming potential (GWP), 0.66 kg SO2eq. Terrestrial acidification and 5.77 m3 water consumption was selected to be the optimal choice due to its good profile in the LCA and the Fc associated with the mix. Second, intelligent predictions were conducted by using six algorithms (ANN-BP), (ANN-GRG), (ANN-GA), (GP), (EPR), and (GMDH-Combi). The results show that (ANN-BP) with performance indices of R; 0.989, R2; 0.979, mean square error (MSE); 2252.55, root mean squared error (RMSE); 42.46 MPa and mean absolute percentage error (MAPE); 4.95% outclassed the other five techniques and is selected as the decisive model. However, it also compared well and outclassed previous models, which had used gene expression programming (GEP) and random forest regression (RFR) and achieved R2of 0.96 and 0.91, respectively. Doi: 10.28991/CEJ-2022-08-11-03 Full Text: PDF

Publisher

Ital Publication

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3