Modified EDA and Backtranslation Augmentation in Deep Learning Models for Indonesian Aspect-Based Sentiment Analysis

Author:

Natasya .,Girsang Abba Suganda

Abstract

In the process of developing a business, aspect-based sentiment analysis (ABSA) could help extract customers' opinions on different aspects of the business from online reviews. Researchers have found great prospective in deep learning approaches to solving ABSA tasks. Furthermore, studies have also explored the implementation of text augmentation, such as Easy Data Augmentation (EDA), to improve the deep learning models’ performance using only simple operations. However, when implementing EDA to ABSA, there will be high chances that the augmented sentences could lose important aspects or sentiment-related words (target words) critical for training. Corresponding to that, another study has made adjustments to EDA for English aspect-based sentiment data provided with the target words tag. However, the solution still needs additional modifications in the case of non-tagged data. Hence, in this work, we will focus on modifying EDA that integrates POS tagging and word similarity to not only understand the context of the words but also extract the target words directly from non-tagged sentences. Additionally, the modified EDA is combined with the backtranslation method, as the latter has also shown quite a significant contribution to the model’s performance in several research studies. The proposed method is then evaluated on a small Indonesian ABSA dataset using baseline deep learning models. Results show that the augmentation method could increase the model’s performance on a limited dataset problem. In general, the best performance for aspect classification is achieved by implementing the proposed method, which increases the macro-accuracy and F1, respectively, on Long Short-Term Memory (LSTM) and Bidirectional LSTM models compared to the original EDA. The proposed method also obtained the best performance for sentiment classification using a convolutional neural network, increasing the overall accuracy by 2.2% and F1 by 3.2%. Doi: 10.28991/ESJ-2023-07-01-018 Full Text: PDF

Publisher

Ital Publication

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing aspect-based sentiment analysis using data augmentation based on back-translation;International Journal of Data Science and Analytics;2024-08-14

2. Exploring Electric Vehicle Adoption in Indonesia Using Zero-Shot Aspect-Based Sentiment Analysis;Sustainable Operations and Computers;2024-08

3. Flexible margins and multiple samples learning to enhance lexical semantic similarity;Engineering Applications of Artificial Intelligence;2024-07

4. A Statistical Prediction Model for Sluice Seepage Based on MHHO-BiLSTM;Water;2024-01-05

5. Easy Data Augmentation for Handling Imbalanced Data in Fake News Detection;2023 International Conference on Technology, Engineering, and Computing Applications (ICTECA);2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3