Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN

Author:

Shin YongTak,Kim Dong-Hoon,Kim Hyeon-Jae,Lim Chaewook,Woo Seung-Buhm

Abstract

The data of the missing section among the vertex surface sea temperature observation data was imputed using the Bidirectional Recurrent Neural Network(BiRNN). Among artificial intelligence techniques, Recurrent Neural Networks (RNNs), which are commonly used for time series data, only estimate in the direction of time flow or in the reverse direction to the missing estimation position, so the estimation performance is poor in the long-term missing section. On the other hand, in this study, estimation performance can be improved even for long-term missing data by estimating in both directions before and after the missing section. Also, by using all available data around the observation point (sea surface temperature, temperature, wind field, atmospheric pressure, humidity), the imputation performance was further improved by estimating the imputation data from these correlations together. For performance verification, a statistical model, Multivariate Imputation by Chained Equations (MICE), a machine learning-based Random Forest model, and an RNN model using Long Short-Term Memory (LSTM) were compared. For imputation of long-term missing for 7 days, the average accuracy of the BiRNN/ statistical models is 70.8%/61.2%, respectively, and the average error is 0.28 degrees/0.44 degrees, respectively, so the BiRNN model performs better than other models. By applying a temporal decay factor representing the missing pattern, it is judged that the BiRNN technique has better imputation performance than the existing method as the missing section becomes longer.

Funder

Ministry of Oceans and Fisheries

Korea Institute of Military Science and Technology

Ministry of Science and ICT

Institute for Information and Communications Technology Promotion

Publisher

Korean Society of Coastal and Ocean Engineers

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Completion of irregular emotion sequence based on users' social relationships and historical emotions;International Journal of Parallel, Emergent and Distributed Systems;2024-05-21

2. Gas Pressure Prediction and Application with Missing Data Imputation Techniques for Gas Regulator Data;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3