1. Kim, E.D., et al.: Technical trends of time-series data imputation. Electron. Telecommun. Trends 36, 145–153 (2021)
2. Choi, H., et al.: Optimal data generation strategy for training RNN-based time-series data imputation models. J. KIISE 49(2), 853–855 (2022)
3. Yoon, J., Zame, W.R., van der Schaar, M.: Estimating missing data in temporal data streams using multi-directional recurrent neural networks. IEEE Trans. Biomed. Eng. 66(5), 1477–1490 (2019). https://doi.org/10.1109/TBME.2018.2874712
4. Cao, W., et al.: BRITS: bidirectional recurrent imputation for time series. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
5. Du, W., Côté, D., Liu, Y.: SAITS: self-attention-based imputation for time series. Exp. Syst. Appl. 219, 119619 (2023). https://doi.org/10.1016/j.eswa.2023.119619