Improved energy efficiency using meta-heuristic approach for energy harvesting enabled IoT network

Author:

Rekha Rekha, ,Garg Dr. Ritu,

Abstract

Energy scarcity is a major problem for resource constrained Internet of Things (IoT) devices. Nowadays, Energy Harvesting (EH) has emerged as a promising solution to prolong the network lifetime using radio signals in wireless relay networks. In this article, we propose an optimization algorithm, based on metaheuristic, to enhance the energy efficiency of amplify and forward relay IoT networks. Energy constraint relay exploits power-splitting based relay protocol to acquire energy from the source and transfer information to destination. We derive an expression for energy efficiency of the system using the throughput at destination and outage probability for performance evaluation. This investigation studies energy efficiency of the network against the various system parameters which are relay location, power-splitting factor, power transmitted, data rate, energy conversion efficiency and noise power and it enables us to find out which parameters need to be optimized. Further, an objective function is formulated to achieve the optimal solution for power transmitted by the source and an adaptive particle swarm optimization (OPA-APSO) algorithm is proposed to attain maximized energy efficiency. OPA-APSO differs from most existing approaches as it provides the best amount of energy harvested while optimizing the energy efficiency. Finally, simulation results demonstrate that OPA-APSO improves energy efficiency and throughput of the network significantly as compared to other existing techniques.

Publisher

Elsevier BV

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3