Hybrid game theoretic strategy for optimal relay selection in energy harvesting cognitive radio network

Author:

Bakshi Shalley1ORCID,Sharma Surbhi1,Khanna Rajesh1

Affiliation:

1. Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology Thapar Institute of Engineering and Technology Patiala India

Abstract

SummaryRelay selection plays a crucial role in enhancing the performance of wireless networks particularly in the context of cognitive radio (CR) systems with energy harvesters. In this paper, we propose a novel approach, namely, CGAPSO Shapley, for the best relay selection while simultaneously optimizing the parameters of signal‐to‐interference‐plus‐noise ratio (SINR), throughput, and outage probability. The CGAPSO Shapley algorithm combines the Shapley value, a cooperative game theory concept, with cellular genetic algorithm particle swarm optimization (CGAPSO) to achieve effective and efficient optimization of relay selection. The CGAPSO framework provides a hybrid structure that integrates cellular genetic algorithm (CGA) and particle swarm optimization (PSO), enabling simultaneous evolution of the population and particles within cells. The incorporation of the Shapley value and the hybrid CGAPSO framework enables effective exploration of the solution space and provides decision‐makers with comprehensive insights for relay selection. By utilizing the Shapley value, we assign weights to the relay nodes based on their contributions to the overall optimization objectives, considering their CR capabilities and energy harvesting capabilities. Some benchmark test functions are used to compare the hybrid algorithm with both the standard CGAPSO, Particle swarm optimization gravitational search algorithm (PSOGSA) and PSO algorithms in evolving best solution. The results show the hybrid algorithm possesses a better capability to escape from local optimums with faster convergence than the standard algorithms. The novel CGAPSO Shapley approach achieves an outage probability of 0.323324, marking a significant improvement of 60% over the outage probability achieved with conventional approach.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3