The manifestation of VIS-NIRS spectroscopy data to predict and map soil texture in the Triffa plain (Morocco)

Author:

Lazaar Ayoub, ,Hammouti Kamal El,Naiji Zakariae,Pradhan Biswajeet,Gourfi Abdelali,Andich Karim,Monir Abdelilah, , , , , ,

Abstract

The use of standard laboratory methods to estimate the soil texture is complicated, expensive, and time-consuming and needs considerable effort. The reflectance spectroscopy represents an alternative method for predicting a large range of soil physical properties and provides an inexpensive, rapid, and reproducible analytical method. This study aimed to assess the feasibility of Visible (VIS: 350-700 nm) and Near-Infrared and Short-Wave-Infrared (NIRS: 701-2500 nm) spectroscopy for predicting and mapping the clay, silt, and sand fractions of the soils of Triffa plain (north-east of Morocco). A total of 100 soil samples were collected from the non-root zone of soil (0-20 cm) and then analyzed for texture using the VIS-NIRS spectroscopy and the traditional laboratory method. The partial least squares regression (PLSR) technique was used to assess the ability of spectral data to predict soil texture. The results of prediction models showed excellent performance for the VIS-NIRS spectroscopy to predict the sand fraction with a coefficient of determination R2 = 0.93 and Root Mean Squares Error (RMSE) =3.72, good prediction for the silt fraction (R2=0.87; RMSE = 4.55), and acceptable prediction for the clay fraction (R2 = 0.53; RMSE = 3.72). Moreover, the range situated between 2150 and 2450 nm is the most significant for predicting the sand and silt fractions, while the spectral range between 2200 and 2440 nm is the optimal to predict the clay fraction. However, the maps of predicted and measured soil texture showed an excellent spatial similarity for the sand fraction, a certain difference in the variability of clay fraction, while the maps of silt fraction show a lower difference.

Publisher

Kuwait Journal of Science

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3