The Surface Urban Heat Island and Key Mitigation Factors in Arid Climate Cities, Case of Marrakesh, Morocco

Author:

Gourfi Abdelali,Taïbi Aude Nuscia,Salhi Salima,Hannani Mustapha El,Boujrouf Said

Abstract

The use of vegetation is one of the effective methods to combat the increasing Urban Heat Island (UHI). However, vegetation is steadily decreasing due to urban pressure and increased water stress. This study used air temperature measurements, humidity and an innovative advanced earth system analysis to investigate, at daytime, the relationship between green surfaces, built-up areas and the surface urban heat island (SUHI) in Marrakesh, Morocco, which is one of the busiest cities in Africa and serves as a major economic centre and tourist destination. While it is accepted that UHI variation is generally mitigated by the spatial distribution of green spaces and built-up areas, this study shows that bare areas also play a key role in this relationship. The results show a maximum mean land surface temperature difference of 3.98 °C across the different city neighbourhoods, and bare ground had the highest correlation with temperature (r = 0.86). The correlation between the vegetation index and SUHI is decreasing over time, mainly because of the significant changes in the region’s urban planning policy and urban growth. The study represents a relevant overview of the factors impacting SUHI, and it brings a new perspective to what is known so far in the literature, especially in arid climate areas, which have the specificity of large bare areas playing a major role in SUHI mitigation. This research highlights this complex relationship for future sustainable development, especially with the challenges of global warming becoming increasingly critical.

Funder

French Partenariat Hubert Curien "Maghreb"

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3