Abstract
Cape gooseberry fruits have positioned in the world market due to their excellent nutritional characteristics, because they are an ideal food that contributes to raising the defenses of the human body and helps it to face diseases such as COVID-19, they are also a natural source of antioxidants and anticancer agents. In order to avoid the physiopathy of cracking in cape gooseberry fruits, these were characterized at harvest time, coming from greenhouse plants irrigated with different applications of water levels and irrigation frequencies, as well as different calcium doses, in a design of randomized complete blocks with 12 treatments. The blocks were the irrigation frequencies (4, 9 and 14 days), while the treatments were the combination of four irrigation coefficients (0.7, 0.9, 1.1 and 1.3 of the evaporation of the tank class A) and three doses of calcium (0, 50 and 100 kg ha-1). The plants were sown in 20 L pots with peat moss substrate. Fruits were harvested at the color stage 5 and 6 of the calyx, from 19 weeks after transplanting. The different water levels and irrigation frequencies did not significantly affect the firmness of the cape gooseberry fruits, but there was a strong tendency that cracked gooseberry fruits are less firm than healthy fruits. As the irrigation coefficient increased, the total soluble solids (TSS) increased while the total titratable acids (TTA) decreased. Irrigation frequency of 14 days generated fruits with higher TSS and pH values. The calcium doses did not affect the calcium concentration in the fruits or the TSS, TTA and pH values. Therefore, it can be concluded that incremented irrigation coefficients (up to 1.3) increase the quality of cape gooseberry fruits.
Publisher
Sociedad Colombiana de Ciencias Horticolas
Reference71 articles.
1. Agbemafle, R., J. Owusu-Sekyere, A. Bart-Plange, and J. Otchere. 2014. Effect of deficit irrigation and storage on physicochemical quality of tomato (Lycopersicon esculentum Mill., var. Pechtomech). Food Sci. Qual. Manage. 34, 113-121
2. Agronet. 2020. Sistema de estadísticas agropecuarias. Producción nacional por producto: uchuva. In: http://www.agronet.gov.co; consulted: May, 2020.
3. Almutairi, K.F., D.R. Bryla, and B.C. Strik. 2017. Potential of deficit irrigation, irrigation cutoffs, and crop thinning to maintain yield and fruit quality with less water in northern highbush blueberry. HortScience 52(4), 625-633. Doi: 10.21273/HORTSCI11533-16
4. Álvarez-Herrera, J., H. Balaguera-López, and G. Fischer. 2012. Effect of irrigation and nutrition with calcium on fruit cracking of the cape gooseberry (Physalis peruviana L.) in the three strata of the plant. Acta Hortic. 928, 163-170. Doi: 10.17660/ActaHortic.2012.928.19
5. Álvarez-Herrera, J., G. Fischer, L.P. Restrepo, and M. Quicazán. 2014. Contenidos de carotenoides totales y ácido ascórbico en frutos sanos y rajados de uchuva (Physalis peruviana L.). Acta Hortic. 1016, 7-81. Doi: 10.17660/ActaHortic.2014.1016.8
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献