Last mile delivery Optimisation model for drone-enabled Vehicle Routing Problem

Author:

Tausif Ismail

Abstract

In light of e-commerce's exponential growth trajectory over recent years, it has never been more critical to evaluate the last-mile delivery segment for its efficiency and cost-effectiveness. Autonomous vehicles (drones) offer considerable promise as potential solutions with ongoing investigations into emerging technologies in this context. To address problems related to last mile-delivery in logistics operations, the practicality of adopting a hybrid truck-drone delivery system is examined through this study. The researchers utilized Mixed-integer linear programming (MILP)and Gurobi optimization solvers both for optimizing performance as well as facilitating execution. While testing a drone dataset of a well-known logistics company as part of their research using an optimization model, the findings suggested that were remarkable competitive advantages including significant gains in reduction of timing. Nevertheless, there are several constraints like maintenance, recharging, difficult weather conditions & traffic congestion-necessitating focused innovative AI-based approaches. In spite of these impediments, a hybrid truck-drone’s potential applicability can remarkably boost the efficiency of last-mile delivery operations.

Publisher

Information Physics Institute

Reference62 articles.

1. Optimization Approaches for the Traveling Salesman Problem with Drone

2. Applegate, D., Bixby, R., Chvátal, V., & Cook, W. (2006). The Traveling Salesman Problem. Princeton University Press.

3. Last mile delivery by drones: an estimation of viable market potential and access to citizens across European cities

4. Bakir, I. and Tiniç, G.Ö., 2020. Optimizing drone-assisted last-mile deliveries: The vehicle routing problem with flexible drones. Optimization-Ouline. Org, pp.1-28.

5. Bamburry, D. (2015). Drones: Designed for product delivery. Design Management Review, 26(1), 40-48.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3