Optimizing Autonomous UAV Navigation with D* Algorithm for Sustainable Development

Author:

Suanpang Pannee1ORCID,Jamjuntr Pitchaya2ORCID

Affiliation:

1. Department of Information Technology, Faculty of Science & Technology, Suan Dusit University, Bangkok 10300, Thailand

2. Electronic and Telecommunication Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

Abstract

Autonomous navigation for Unmanned Aerial Vehicles (UAVs) has emerged as a critical enabler in various industries, from agriculture, delivery services, and surveillance to search and rescue operations. However, navigating UAVs in dynamic and unknown environments remains a formidable challenge. This paper explores the application of the D* algorithm, a prominent path-planning method rooted in artificial intelligence and widely used in robotics, alongside comparisons with other algorithms, such as A* and RRT*, to augment autonomous navigation capabilities in UAVs’ implication for sustainability development. The core problem addressed herein revolves around enhancing UAV navigation efficiency, safety, and adaptability in dynamic environments. The research methodology involves the integration of the D* algorithm into the UAV navigation system, enabling real-time adjustments and path planning that account for dynamic obstacles and evolving terrain conditions. The experimentation phase unfolds in simulated environments designed to mimic real-world scenarios and challenges. Comprehensive data collection, rigorous analysis, and performance evaluations paint a vivid picture of the D* algorithm’s efficacy in comparison to other navigation methods, such as A* and RRT*. Key findings indicate that the D* algorithm offers a compelling solution, providing UAVs with efficient, safe, and adaptable navigation capabilities. The results demonstrate a path planning efficiency improvement of 92%, a 5% reduction in collision rates, and an increase in safety margins by 2.3 m. This article addresses certain challenges and contributes by demonstrating the practical effectiveness of the D* algorithm, alongside comparisons with A* and RRT*, in enhancing autonomous UAV navigation and advancing aerial systems. Specifically, this study provides insights into the strengths and limitations of each algorithm, offering valuable guidance for researchers and practitioners in selecting the most suitable path-planning approach for their UAV applications. The implications of this research extend far and wide, with potential applications in industries such as agriculture, surveillance, disaster response, and more for sustainability.

Funder

Suan Dusit University

the innovative process for inspiring chefs to become chef innovators for supporting tourism and hospitality industry to Michelin standards

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3