ON ATTRACTORS OF GINZBURG–LANDAU EQUATIONS IN DOMAIN WITH LOCALLY PERIODIC MICROSTRUCTURE. SUBCRITICAL, CRITICAL AND SUPERCRITICAL CASES

Author:

Bekmaganbetov К.А.12,Tolemys A. A.32,Chepyzhov V. V.4,Chechkin G.А.562

Affiliation:

1. Lomonosov Moscow State University, Kazakhstan Branch

2. Institute of Mathematics and Mathematical Modeling

3. Eurasian National University named after L.N. Gumilyov

4. Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)

5. Lomonosov Moscow State University

6. Institute of Mathematics with a Computer Center – a division of the Ufa Federal Research Center of the Russian Academy of Sciences

Abstract

In the paper we consider a problem for complex Ginzburg–Landau equations in a medium with locally periodic small obstacles. It is assumed that on the obstacle surface one can have different conductivity coefficients. We prove that the trajectory attractors of this system converge in a certain weak topology to the trajectory attractors of the homogenized Ginzburg–Landau equations with an additional potential (in the critical case), without the additional potential (in the subcritical case) in a medium without obstacles, or simply disappear (in the supercritical case).

Publisher

The Russian Academy of Sciences

Reference15 articles.

1. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. Strong Convergence of Trajectory Attractors for Reaction–Diffusion Systems with Random Rapidly Oscillating Terms // Communications on Pure and Applied Analysis (CPAA). 2020. V. 19. № 5. P. 2419–2443.

2. Bekmaganbetov K.A., Chechkin G.A., Chepyzhov V.V. “Strange Term” in Homogenization of Attractors of Reaction–Diffusion Equation in Perforated Domain // Chaos, Solitons & Fractals. 2020. V. 140. Art. No 110208.

3. Бекмаганбетов К.А., Толеубай А.М., Чечкин Г.А. Об аттракторах системы уравнений Навье–Стокса в двумерной пористой среде // Проблемы математического анализа. 2022. Т. 115. С. 15–28.

4. Chechkin G.A., Chepyzhov V.V., Pankratov L.S. Homogenization of Trajectory Attractors of Ginzburg–Landau equations with Randomly Oscillating Terms // Discrete and Continuous Dynamical Systems. Series B (DCDS-B). 2018. V. 23. № 3. P. 1133–1154.

5. Бекмаганбетов К.А., Чепыжов В.В., Чечкин Г.А. Сильная сходимость аттракторов системы реакции–диффузии с быстро осциллирующими членами в ортотропной пористой среде // Известия РАН. Серия математическая. 2022. Т. 86. № 6. С. 47–78.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3