Modeling of pension income and expenditures based on the Verhulst equation and polynomial regression with demographic projections

Author:

Suo S.1,Kostyrin E. V.1

Affiliation:

1. Bauman Moscow State Technical University (National Research University)

Abstract

To calculate the demographic load factor in this work, the forecasting of the working-age population of Russia was carried using the polynomial regression equation of the fourth degree with an accuracy of 0.227% and forecasting the number of people older than working age using the Verhulst equation (prediction accuracy of 1.084%) for the period from 2023 to 2031 (9 years). An economic and mathematical model was developed for calculating pension income and expenses for the implementation of individual (personalized) pension accounts of citizens and a stress analysis of the model was carried out based on an assessment of the impact of the pension contribution rate, average monthly salary, average investment income rate for transactions with pension funds of citizens (rate of return) and growth rates salaries, ensuring a balance between pension income and pension expenses of citizens. The practical implementation of the developed economic and mathematical model shows that the minimum value of the rate of return, ensuring balance between pension income and pension expenses of citizens, is 1.408%. The minimum average monthly salary is 22,949.39 rubles; the contribution rate to the Pension fund is estimated at 18.813%.

Publisher

The Russian Academy of Sciences

Reference24 articles.

1. Алексашенко С. В. (2019). Русское экономическое чудо: что пошло не так? М.: АСТ. 320 с. [Aleksashenko S. В. (2019). Russian economic miracle: What went wrong? Moscow: AST. 320 p. (in Russian).]

2. Efficiency of the Funded Elements of the Pension System: International Practices

3. Головкина А. Г., Козынченко В. А., Клименко И. С. (2022). Метод последовательных приближений для построения модели динамической полиномиальной регрессии // Вестник Санкт-Петербургского университета. Т. 18. Вып. 4. С. 487–500. [Golovkina A. G., Kozychenko V. A., Klimenko I. S. (2022). Method of successive approximations for the dynamic polynomial regression model building. Saint-Petersburg University Bulletin, 4, 18, 487–500 (in Russian).]

4. Гурвич Е. Т. (2019). Развилки пенсионной реформы: российский и международный опыт // Вопросы экономики. № 9. С. 5–39. [Gurvich E. Т. (2019). Pension reform developments: Russian and international experience. Voprosy Ekonomiki, 9, 5–39 (in Russian).]

5. Костырин Е. В., Дрынкин С. Г. (2023). Экономический эффект от внедрения персонифицированных пенсионных счетов в систему пенсионного обеспечения граждан России // Экономика и управление: проблемы, решения. Т. 3. № 9. С. 129–144. [Kostyrin E. V., Drynkin S. G. (2023). Economic effect of the introduction of personalized pension accounts into the pension system of Russian citizens. Economics and Management: Problems, Solutions, 3, 9, 129–144 (in Russian).]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3