The method of successive approximations for constructing a model of dynamic polynomial regression

Author:

Golovkina Anna G., ,Kozynchenko Vladimir A.,Klimenko Ilia S., ,

Abstract

Predicting the behavior of a certain process in time is an important task that arises in many applied areas, and information about the system that generated this process can either be completely absent or be partially limited. The only available knowledge is the accumulated data on past states and process parameters. Such a task can be successfully solved using machine learning methods, but when it comes to modeling physical experiments or areas where the ability of a model to generalize and interpretability of predictions are important, then the most machine learning methods do not fully satisfy these requirements. The forecasting problem is solved by building a dynamic polynomial regression model, and a method for finding its coefficients is proposed, based on the connection with dynamic systems. Thus, the constructed model corresponds to a deterministic process, potentially described by differential equations, and the relationship between its parameters can be expressed in an analytical form. As an illustration of the applicability of the proposed approach to solving forecasting problems, we consider a synthetic data set generated as a numerical solution of a system of differential equations that describes the Van der Pol oscillator.

Publisher

Saint Petersburg State University

Subject

Applied Mathematics,Control and Optimization,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3