USING MULTILEVEL HASH TABLES TO SPEED UP RENDERING

Author:

ZHDANOV D. D.1,LYSYKH A. I.1,KHALIMOV R. R.1,KINEV I. E.1,ZHDANOV A. D.1

Affiliation:

1. St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University)

Abstract

In this paper, we analyze realistic rendering methods in terms of their efficiency in calculating caustic and indirect illumination. As the basic approach to realistic rendering, we choose bidirectional progressive ray tracing with backward photon maps. The main factors that reduce the efficiency of this method are analyzed. It is shown that the main factor that affects its performance is slow access to photon map data. Different techniques for construction of spatial acceleration structures are considered, their advantages and disadvantages are investigated. As the main approaches, we select the regular spatial grid and binary kd tree. The spatial grid provides high-speed access to photon data at low adaptability of photon map partitioning. The kd tree is characterized by high spatial adaptability of photon map partitioning but slow access to photon data. We propose a combined solution that takes advantage of the adaptability of the kd tree and the fast data access of the spatial grid. For this purpose, the regular grid is superimposed on the kd tree constructed based on the principle of space partitioning of a photon region into geometrically identical halves. To reduce memory consumption, we propose, first, to use multilevel spatial grids superimposed on the selected nodes of the kd tree and, second, to store spatial grids in the form of hash tables in order to reduce the size of the acceleration structure. Thus, a spatial acceleration structure of a new type—a tree of hash tables—is proposed and implemented. For the spatial structure developed, we implement methods for finding the nearest photons the integration spheres of which cover the illumination point, as well as methods for finding the intersection between a ray segment and photon integration spheres. The proposed software solutions are implemented in the Lumicept software package; for some scenes, the proposed method is compared with the Lumicept method based on the binary tree. The comparison shows that our method can increase the overall speed of the rendering process by more than 40%.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3