Complex Modification of the Surface Layer of a High-Entropy Al-Cr-Fe-Co-Ni Alloy by Electron-Ion-Plasma Treatment

Author:

Ivanov Yu. F.1,Efimov M. O.2,Teresov A. D.1,Gromov V. E.2,Shliarova Yu. A.2,Panchenko I. A.2

Affiliation:

1. Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

2. Siberian State Industrial University

Abstract

Using the technology of wire-arc additive manufacturing (WAAM – wire arc additive manufacture), a high-entropy alloy (HEA) of non-equiatomic composition Al, Cr, Fe, Co, Ni was manufactured. Using the methods of modern physical materials science, an analysis of the elemental and phase composition, defective substructure, mechanical and tribological properties of the HEA surface layer, formed as a result of complex modification, combining the deposition of a film (B + Cr) and irradiation with a pulsed electron beam in an argon medium, was carried out. In the initial state, the alloy has a simple cubic lattice with a lattice parameter of 0.28795 nm; the average grain size of the HEA is 12.3 µm. Chemical elements (at. %) 33.4 Al; 8.3 Cr, 17.1 Fe, 5.4 Co, 35.7 Ni, which form HEA, are distributed quasi-periodically. The irradiation regime was revealed (energy density of the electron beam ES = 20 J/cm2, pulse duration 200 µs, number of pulses 3 pulses, frequency 0.3 s more than 5 times), allowing to increase microhardness (almost 2 times) and wear resistance (more than 5 times), reduce the coefficient of friction by 1.3 times. Regardless of the value of ES, HEA is a single-phase material and has a simple cubic crystal lattice. High-speed crystallization of the surface layer leads to the formation of a subgrain structure (150–200) nm. It is shown that an increase in the strength and tribological properties of HEA is due to a significant (4.5 times) decrease in the average grain size, the formation of particles of chromium and aluminum oxyborides, and the incorporation of boron atoms into the crystal lattice of HEA.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3