Investigation of Morphology and Electrical Properties of Structures Based on the Heterojunction Monocrystalline Si/Microcrystalline ZnO

Author:

Semenov A. R.1,Litvinov V. G.1,Kholomina T. A.1,Ermachikhin A. V.1,Rybin N. B.1

Affiliation:

1. Ryazan State Radio Engineering University named after V.F. Utkin

Abstract

The results of an experimental study of the surface morphology of zinc oxide films and the electrical properties of structures based on the monocrystalline Si/microcrystalline ZnO heterojunction are presented. The structure of zinc oxide films grown in an atmosphere of argon and oxygen is analyzed, and the size distribution of nanoscale fibers grown on its surface is obtained. The capacitance-voltage characteristics of the In/ZnO/n-Si/Al and Au/ ZnO/n-Si/Al heterostructures have been simulated. Based on the calculations and comparison of experimental and model dependences, the concentration of free charge carriers in the sample and the position of the Fermi level were determined, the presence of a fixed charge in the structure was revealed, the density of surface states was found based on the ratio of the voltage applied to the structure and the surface potential at the interface of the materials of the layers of structures. The value of the built-in surface charge is calculated. The interrelation of the upper contact material with the volt-farad and volt-ampere characteristics of the structure is investigated. The resistance of the formed zinc oxide films is calculated. The prevailing charge transfer mechanisms are discussed. The influence of technological modes of obtaining zinc oxide films obtained by spray pyrolysis on the structure of the surface, the effective capacity of the structure, the density of electronic states, the processes of charge carrier transfer in samples under the action of an electric field is analyzed.

Publisher

The Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3