Production machines maintenance based on digitalization

Author:

Tugengold A. K.1ORCID,Voloshin R. N.1ORCID,Yusupov A. R.1ORCID,Kruglova N. P.2ORCID

Affiliation:

1. Don State Technical University, Rostov-on-Don

2. Platov South-Russian State Polytechnic University (NPI), Novocherkassk

Abstract

Introduction.Digital data and analytics transform the role of the production equipment maintenance. Analytical information of sensors placed on the product allows continuous monitoring of the production machines operation and their timely servicing. Thus, defects in technical equipment are identified, the analysis of which enables to develop algorithms for monitoring and forecasting, and to prevent equipment from overshooting the limits of the safe operation.Materials and Methods.Basic digitalization principles and the digital images structure are presented. A mathematical method is used to describe the digital image vector and the control system algorithm.Research Results.The achievements of the known systems of maintenance and digitalization of various machines are summarized. The application of a dynamic digital image made it possible to determine the desired levels of the production facilities maintenance. An optional version of monitoring the equipment state within the framework of the production digitalization concept is shown. It is based on the proposed algorithm for an autonomous control of the process state.Discussion and Conclusions.The construction of machine digital images in accordance with the main stages of its life cycle is described. The task of automated maintenance of machine tools based on digitalization is considered.

Publisher

FSFEI HE Don State Technical University

Reference16 articles.

1. Shvab, K. Chetvertaya promyshlennaya revolyutsiya / K. Shvab. — Moskva : Eksmo, 2016. — 138 s. — (Top Business Awards).

2. Tugengol'd, A. K. Sistema znanii v vide intellektual'noi elektronnoi tekhnicheskoi dokumentatsii dlya mnogooperatsionnykh stankov / A. K. Tugengol'd, A. F. Lysenko, D. A. Statovoi // Vestnik mashinostroeniya. — 2015. — № 11. — S. 14–17.

3. Kemerait, R. C. New cepstral approach for prognostic maintenance of cycle machinery / R. C. Kemerait // Proceedings of the IEEE Southeast Conference in Tampa. — 1987. — P. 256–262.

4. Fisher, C. Multi-sensor condition monitoring systems for gas turbines / C. Fisher, N. C. Baines // Journal of Condition Monitoring. — 1988. — № 1. — P. 57–68.

5. Tugengol'd, A. K. Monitoring sostoyaniya mnogooperatsionnykh stankov na baze kontseptsii eMindMachine / A. K. Tugengol'd, R. N. Voloshin, S. V. Yushchenko // Vestnik Donskogo gos. tekhn. un-ta. — 2016. — T. 16, № 1 (84). — S. 77–86.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3