Finite element modeling of the joint action of flow slide and protective structure

Author:

Gaidzhurov Р. Р.1ORCID,Saveleva N. А.1ORCID,Dyachenkov V. А.1

Affiliation:

1. Don State Technical University

Abstract

Introduction. In the context of the problem of plane deformation, a finite-element model of a natural landslide slope is developed. It allows for the joint work of a flow slide and a protective engineering structure. The Drucker-Prager model is used to take into account the physical nonlinearity of the slope layer material. To activate the kinematic instability, a viscoelastic interlayer is introduced into the design scheme, along which the landslide layer slides. Materials and Methods. Numerical experiments were performed using the ANSYS Mechanical software package, which implements the finite element method in the form of the displacement method. Slope discretization is performed on the basis of PLANE42 flat four-node finite elements. To simulate the displacement of the landslide layer relative to the fixed base, the combined viscoelastic elements COMBIN14 were used. Results. A physically nonlinear model of a natural landslide slope consisting of a base, a landslide layer, and a viscoelastic interlayer, is formalized. An engineering technique for analyzing the stress-strain state of the “slopeprotective structure” system has been developed, taking into account the kinematic instability of the landslide layer. A series of computational experiments was carried out. Discussion and Conclusion. Based on the calculations performed, it is shown that the proposed method enables to specify the force action of the landslide layer on the protective structure and, thereby, to increase the reliability of the risk assessment when activating the landslide process.

Publisher

FSFEI HE Don State Technical University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3