Numerical simulation of the behavior of kinematically unstable slopes under dynamic influences

Author:

Gaidzhurov P. P1ORCID,Saveleva N. A.1ORCID,Trufanova E. V.1ORCID

Affiliation:

1. Don State Technical University

Abstract

Introduction. The concept of estimating the dynamic parameters of the “base — weakened layer — block” system is proposed, taking into account the physical nonlinearity of the material and the kinematic method of excitation of vibrations. In accordance with this approach, the physical nonlinearity of the base and block material is considered using the Drucker- Prager model. The weakened layer is modeled by 3D spring finite elements. The verification procedure of the proposed methodology is carried out on the example of the dynamic calculation of the “base — weakened layer — slope” system.Materials and Methods. The computational experiments were performed using the ANSYS Mechanical software package in combination with a nonlinear solver based on the Newton-Raphson procedure. SOLID45 volumetric finite elements were used to discretize the computational domains. Combined elastic-viscous elements COMBIN14 were used to simulate the displacement of the block relative to the fixed base.Results. An engineering technique for the dynamic analysis of the stress-strain state of the “base — weakened layer — block” spatial system with kinematic method of excitation of vibrations is developed. The accuracy and convergence of the proposed method is investigated using specific numerical examples.Discussion and Conclusion. Based on the mathematic simulation performed, it is shown that the developed technique provides assessing the risks of the occurrence of real landslide processes caused by external non-stationary impacts.

Publisher

FSFEI HE Don State Technical University

Reference14 articles.

1. Fadeev, A. B. Metod konechnykh elementov v geomekhanike / A. B. Fadeev. — Moskva : Nedra, 1987. — 221 s.

2. Eberhardt, E. Rock Slope Stability Analysis – Utilization of Advanced Numerical Techniques / Erik Eberhardt. — Vancouver, Canada: Geological Engineering/Earth Ocean Sciences, UBS, 2003. — 41 p.

3. Hoek, H. Rock Slope Engineering. 3rd ed. / H. Hoek, J. W. Bray. — London: The Institution of Mining and Metallurgy, 1981. — 358 p.

4. Griffiths, D. V. Slope stability analysis by finite elements / D. V. Griffiths, P. A. Lane // Geotechnique. — 1999. — Vol. 49. — P. 387–403. https://doi.org/10.1680/geot.1999.49.3.387

5. Stability Modeling with SLOPE/W. An Engineering Methodology. — Alberta, Canada, 2015. — 244 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3