Predictive variables for sleep quality in professional drivers

Author:

Serrano-Fernández María-JoséORCID,Boada-Grau Joan,Robert-Sentís Lluís,Vigil-Colet Andreu

Abstract

Antecedentes: Los conductores profesionales suelen padecer problemas para dormir o descansar correctamente. Esto puede deberse a diversos factores tanto personales como específicos de las condiciones laborales. En el presente trabajo nos hemos planteado desarrollar un modelo predictivo sobre la calidad del sueño en conductores profesionales utilizando los indicadores siguientes: Edad, Género, Confort del asiento, suspensión del asiento, Soporte lumbar ajustable del asiento del conductor, Horas de conducción, Problemas musculoesqueléticos, Drivers Stress, Irritación, Personalidad resistente, Burnout, conductas de seguridad e Impulsividad. Método: Los participantes han sido 369 conductores profesionales, de distintos sectores del transporte, obtenidos mediante un muestreo no probabilístico. Se han utilizado el programa SPSS 25.0. Resultados: Se determina la capacidad predictiva de algunas variables que afectan a los conductores sobre la calidad del sueño. Conclusiones: La calidad del sueño se puede predecir a través de determinadas variables, siendo la mejor predictora Exhaustion (Burnout). Esta investigación contribuye a un mayor conocimiento de la calidad del sueño y a la mejora de la salud de los conductores profesionales. Background: Professional drivers often have problems sleeping or resting properly. This may be due to various factors, both personal and specific to their working conditions. In this study, we set out to develop a predictive model for the quality of sleep in professional drivers using the following indicators: Age, Gender, Seat Comfort, Seat Suspension, Adjustable Lumbar Support of the Driver’s Seat, Driving Hours, Musculoskeletal Problems, Driver Stress, Irritation, Resistant Personality, Burnout, Safety Behaviors and Impulsivity. Method: The participants were 369 professional drivers from different transport sectors, obtained through non-probabilistic sampling. The SPSS 25.0 program was used for statistical analysis. Results: The predictive capacity of certain variables that affect drivers’ sleep quality is determined. Conclusions: Sleep quality can be predicted by means of certain variables, the best predictor of which is Exhaustion (Burnout). This research contributes to the body of knowledge on sleep quality and on improving the health of professional drivers.

Publisher

Servicio de Publicaciones de la Universidad de Murcia

Subject

General Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3