A Decision-Making Model for Professional Drivers Selection: A Hybridized Fuzzy–AROMAN–Fuller Approach

Author:

Čubranić-Dobrodolac Marjana1ORCID,Jovčić Stefan2ORCID,Bošković Sara2ORCID,Babić Darko3ORCID

Affiliation:

1. Faculty of Transport and Traffic Engineering, University of Belgrade, 11000 Belgrade, Serbia

2. Faculty of Transport Engineering, University of Pardubice, 532 10 Pardubice, Czech Republic

3. Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia

Abstract

Professional drivers play a crucial role in many businesses and the lives of people. They are responsible for transferring people and goods between distant points, enabling safe and efficient flows. The road traffic death rate is from 8.3 to 27.5 per 100,000 inhabitants in the countries globally. Because professional drivers spend a significant amount of time on the road, their appropriate selection may contribute to general traffic safety. In addition, an adequate selection of candidates significantly impacts the financial costs of the employing company. However, the recruitment procedure is a very complex task where multiple criteria should be considered. By its nature, this is a typical multi-criteria decision-making problem. The purpose of this paper is twofold: to contribute to the methodological, as well as to the professional field. Considering the professional, we propose a decision-making tool in the procedure of professional driver selection. There are several methodological contributions. By reviewing the literature, we identified 14 criteria for candidate selection. In the proposed model, by using expert opinion and implementing DEMATEL and Fuller’s pairwise comparisons, we ranked these criteria and determined the seven most important for further calculation procedure. Here, we introduced an original approach for measuring the reliability of obtained answers. Then, to rank the candidates, the fuzzy AROMAN approach is applied for the first time in the literature. The input data were obtained in the form of a survey, where the experts evaluated the importance of criteria and their interrelation. We used MS Excel and MATLAB for data processing. An additional methodological contribution of this study is an advancement of the AROMAN method by the proposal of an algorithm for the calculation of parameter λ used in the final ranking formula. To illustrate the applicability of the proposed model, a case study is provided. Based on the results, we can conclude that the new methodological approaches can be successfully used in the procedure of professional driver selection, as well as in solving other multi-criteria decision-making problems.

Funder

Research Program

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3