Optimized Grid Partitioning and Scheduling in Multi-Energy Systems Using a Hybrid Decision-Making Approach

Author:

Liu Peng1,Zhang Tieyan1,Tian Furui2,Teng Yun1,Yang Miaodong3

Affiliation:

1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110000, China

2. Zhuji Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Zhuji 311800, China

3. Liaoning Qinghe Power Generation Co., Ltd., Tieling 112003, China

Abstract

This paper presents a thorough review of our state-of-the-art technique for enhancing dynamic grid partitioning and scheduling in multi-energy source systems. We use a hybrid approach to T-spherical fuzzy sets, combining the alternative ranking order method accounting for the two-step normalization (AROMAN) method for alternating ranking order to enable two-step normalisation with the method based on removal effects of criteria (MEREC) for eliminating criteria effects. This enables us to obtain the highest level of accuracy from our findings. To ascertain the relative importance of these criteria, we use MEREC to perform a rigorous examination of the influence that each evaluation criterion has on the outcomes of the decision-making process. In addition, we use AROMAN to provide a strong foundation for assessing potential solutions by accounting for spherical fuzzy sets to account for any ambiguity. We illustrate how our approach successfully considers several factors, such as social acceptability, technical feasibility, environmental sustainability, and economic feasibility, through the analysis of an extensive case study. Our approach provides decision-makers (DMs) with a rigorous and rational framework for assessing and choosing the best grid division and scheduling options. This is done in an effort to support the administration and design of resilient and sustainable multi-energy systems. This research contributes to the growing body of knowledge in this area by offering insights that help to direct policy, planning, and investment decisions in the shift towards more sustainable energy infrastructures. Moreover, it adds to the growing body of information on multi-criteria decision-making (MCDM) in energy system optimization.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3