Abstract
AbstractQuantification of face-to-face interaction can provide highly relevant information in cognitive and psychological science research. Current commercial glint-dependent solutions suffer from several disadvantages and limitations when applied in face-to-face interaction, including data loss, parallax errors, the inconvenience and distracting effect of wearables, and/or the need for several cameras to capture each person. Here we present a novel eye-tracking solution, consisting of a dual-camera system used in conjunction with an individually optimized deep learning approach that aims to overcome some of these limitations. Our data show that this system can accurately classify gaze location within different areas of the face of two interlocutors, and capture subtle differences in interpersonal gaze synchrony between two individuals during a (semi-)naturalistic face-to-face interaction.
Publisher
Springer Science and Business Media LLC
Subject
Linguistics and Language,Sensory Systems,Language and Linguistics,Experimental and Cognitive Psychology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献