Challenges in replication: Does amygdala gray matter volume relate to social network size?

Author:

McGugin Rankin W.,Roche Alexandra,Ma Jonathan,Gauthier Isabel

Abstract

AbstractIn this work, we tried to replicate and extend prior research on the relationship between social network size and the volume of the amygdala. We focused on the earliest evidence for this relationship (Bickart et al., Nature Neuroscience 14(2), 163–164, 2011) and another methodologically unique study that often is cited as a replication (Kanai et al., Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1327–1334, 2012). Despite their tight link in the literature, we argue that Kanai et al. (Proceedings of the Royal Society B: Biological Sciences, 279(1732), 1327–1334, 2012) is not a replication of Bickart et al. Nature Neuroscience 14(2), 163–164 (2011), because it uses different morphometric measurements. We collected data from 128 participants on a 7-Tesla MRI and examined variations in gray matter volume (GMV) in the amygdala and its nuclei. We found inconclusive support for a correlation between measures of real-world social network and amygdala GMV, with small effect sizes and only anecdotal evidence for a positive relationship. We found support for the absence of a correlation between measures of online social network and amygdala GMV. We discuss different challenges faced in replication attempts for small effects, as initially reported in these two studies, and suggest that the results would be most helpful in the context of estimation and future meta-analytical efforts. Our findings underscore the value of a narrow approach in replication of brain-behavior relationships, one that is focused enough to investigate the specifics of what is measured. This approach can provide a complementary perspective to the more popular “thematic” alternative, in which conclusions are often broader but where conclusions may become disconnected from the evidence.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3