AmygdalaGo-BOLT3D: A boundary learning transformer for tracing human amygdala

Author:

Dong Bo,Zhou Quan,Gao Peng,Wei Jintao,Xiao Jiale,Wang Wei,Liang Peipeng,Lin Danhua,He Hongjian,Zuo Xi-NianORCID

Abstract

AbstractAutomated amygdala segmentation is one of the most common tasks in human neuroscience research. However, due to the small volume of the human amygdala, especially in developing brains, the precision and consistency of the segmentation results are often affected by individual differences and inconsistencies in data distribution. To address these challenges, we propose an algorithm for learning boundary contrast of 427 manually traced amygdalae in children and adolescents to generate a transformer, AmygdalaGo-BOLT3D, for automatic segmentation of human amygdala. This method focuses on the boundary to effectively address the issue of false positive recognition and inaccurate edges due to small amygdala volume. Firstly, AmygdalaGo-BOLT3D develops a basic architecture for an adaptive cooperation network with multiple granularities. Secondly, AmygdalaGo-BOLT3D builds the self-attention-based consistency module to address generalizability problems arising from individual differences and inconsistent data distributions. Third, AmygdalaGo-BOLT3D adapts the original sample-mask model for the amygdala scene, which consists of three parts, namely a lightweight volumetric feature encoder, a 3D cue encoder, and a volume mask decoder, to improve the generalized segmentation of the model. Finally, AmygdalaGo-BOLT3D implements a boundary contrastive learning framework that utilizes the interaction mechanism between a prior cue and the embedded magnetic resonance images to achieve effective integration between the two. Experimental results demonstrate that predictions of the overall structure and boundaries of the human amygdala exhibit highly improved precision and help maintain stability in multiple age groups and imaging centers. This verifies the stability and generalization of the algorithm designed for multiple tasks. AmygdalaGo-BOLT3D has been deployed for the community (GITHUB LINK) to provide an open science foundation for its applications in population neuroscience.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3