Why many studies of individual differences with inhibition tasks may not localize correlations

Author:

Rouder Jeffrey N.ORCID,Kumar Aakriti,Haaf Julia M.

Abstract

AbstractIndividual difference exploration of cognitive domains is predicated on being able to ascertain how well performance on tasks covary. Yet, establishing correlations among common inhibition tasks such as Stroop or flanker tasks has proven quite difficult. It remains unclear whether this difficulty occurs because there truly is a lack of correlation or whether analytic techniques to localize correlations perform poorly real-world contexts because of excessive measurement error from trial noise. In this paper, we explore how well correlations may localized in large data sets with many people, tasks, and replicate trials. Using hierarchical models to separate trial noise from true individual variability, we show that trial noise in 24 extant tasks is about 8 times greater than individual variability. This degree of trial noise results in massive attenuation in correlations and instability in Spearman corrections. We then develop hierarchical models that account for variation across trials, variation across individuals, and covariation across individuals and tasks. These hierarchical models also perform poorly in localizing correlations. The advantage of these models is not in estimation efficiency, but in providing a sense of uncertainty so that researchers are less likely to misinterpret variability in their data. We discuss possible improvements to study designs to help localize correlations.

Publisher

Springer Science and Business Media LLC

Subject

Developmental and Educational Psychology,Experimental and Cognitive Psychology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3