A common dynamic prior for time in duration discrimination

Author:

de Jong JoostORCID,Akyürek Elkan G.ORCID,van Rijn HedderikORCID

Abstract

AbstractEstimation of time depends heavily on both global and local statistical context. Durations that are short relative to the global distribution are systematically overestimated; durations that are locally preceded by long durations are also overestimated. Context effects are prominent in duration discrimination tasks, where a standard duration and a comparison duration are presented on each trial. In this study, we compare and test two models that posit a dynamically updating internal reference that biases time estimation on global and local scales in duration discrimination tasks. The internal reference model suggests that the internal reference operates during postperceptual stages and only interacts with the first presented duration. In contrast, a Bayesian account of time estimation implies that any perceived duration updates the internal reference and therefore interacts with both the first and second presented duration. We implemented both models and tested their predictions in a duration discrimination task where the standard duration varied from trial to trial. Our results are in line with a Bayesian perspective on time estimation. First, the standard systematically biased estimation of the comparison, such that shorter standards increased the likelihood of reporting that the comparison was shorter. Second, both the previous standard and comparison systematically biased time estimation of subsequent trials in the same direction. Third, more precise observers showed smaller biases. In sum, our findings suggest a common dynamic prior for time that is updated by each perceived duration and where the relative weighting of old and new observations is determined by their relative precision.

Publisher

Springer Science and Business Media LLC

Subject

Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3