Generalizations of the Pollaczek-Khinchin integral equation in the theory of queues

Author:

Neuts Marcel F.

Abstract

A classical result in queueing theory states that in the stable M/G/1 queue, the stationary distribution W(x) of the waiting time of an arriving customer or of the virtual waiting time satisfies a linear Volterra integral equation of the second kind, of convolution type. For many variants of the M/G/1 queue, there are corresponding integral equations, which in most cases differ from the Pollaczek–Khinchin equation only in the form of the inhomogeneous term. This leads to interesting factorizations of the waiting-time distribution and to substantial algorithmic simplifications. In a number of priority queues, the waiting-time distributions satisfy Volterra integral equations whose kernel is a functional of the busy-period distribution in related M/G/1 queues. In other models, such as the M/G/1 queue with Bernoulli feedback or with limited admissions of customers per service, there is a more basic integral equation of Volterra type, which yields a probability distribution in terms of which the waiting-time distributions are conveniently expressed.For several complex queueing models with an embedded Markov renewal process of M/G/1 type, one obtains matrix Volterra integral equations for the waiting-time distributions or for related vectors of mass functions. Such models include the M/SM/1 and the N/G/1 queues, as well as the M/G/1 queue with some forms of bulk service.When the service-time distributions are of phase type, the numerical computation of waiting-time distributions may commonly be reduced to the solution of systems of linear differential equations with constant coefficients.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference55 articles.

1. Optimal control of an M/G/1 priority queue via N-control;Shanthikumar;Amer. J. Math. Management Sci.,1981

2. Time dependence of queues with semi-Markovian services

3. Stochastic Decompositions in theM/G/1 Queue with Generalized Vacations

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved bounds on tails of convolutions of compound distributions: Application to ruin probabilities for the risk process perturbed by diffusion;Journal of Computational and Applied Mathematics;2024-08

2. A state dependent reinsurance model;Insurance: Mathematics and Economics;2017-05

3. On mixing, compounding, and tail properties of a class of claim number distributions;Scandinavian Actuarial Journal;2013-11

4. Applications in Queueing Theory;Fundamentals of Matrix-Analytic Methods;2013-04-30

5. Matrix-Analytic Stochastic Models;Encyclopedia of Operations Research and Management Science;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3