Abstract
A classical result in queueing theory states that in the stable M/G/1 queue, the stationary distribution W(x) of the waiting time of an arriving customer or of the virtual waiting time satisfies a linear Volterra integral equation of the second kind, of convolution type. For many variants of the M/G/1 queue, there are corresponding integral equations, which in most cases differ from the Pollaczek–Khinchin equation only in the form of the inhomogeneous term. This leads to interesting factorizations of the waiting-time distribution and to substantial algorithmic simplifications. In a number of priority queues, the waiting-time distributions satisfy Volterra integral equations whose kernel is a functional of the busy-period distribution in related M/G/1 queues. In other models, such as the M/G/1 queue with Bernoulli feedback or with limited admissions of customers per service, there is a more basic integral equation of Volterra type, which yields a probability distribution in terms of which the waiting-time distributions are conveniently expressed.For several complex queueing models with an embedded Markov renewal process of M/G/1 type, one obtains matrix Volterra integral equations for the waiting-time distributions or for related vectors of mass functions. Such models include the M/SM/1 and the N/G/1 queues, as well as the M/G/1 queue with some forms of bulk service.When the service-time distributions are of phase type, the numerical computation of waiting-time distributions may commonly be reduced to the solution of systems of linear differential equations with constant coefficients.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献