Abstract
Let A be a countable admissible set (as defined in [1], [3]). The language LA consists of all infinitary finite-quantifier formulas (identified with sets, as in [1]) that are elements of A. Notationally, LA = A ∩ Lω1ω. Then LA is a countable subset of Lω1ω, the language of all infinitary finite-quantifier formulas with all conjunctions countable. The set is the set of Lω1ω sentences defined in 2.2 below. The following theorem characterizes those A-Σ1 sets Φ of LA sentences that have uncountable models.Main Theorem (3.1.). If Φ is an A-Σ1set of LA sentences, then the following are equivalent:(a) Φ has an uncountable model,(b) Φ has a model with a proper LA-elementary extension,(c) for every , ⋀Φ → C is not valid.This theorem was announced in [2] and is proved in §§3, 4, 5. Makkai's earlier [4, Theorem 1] implies that, if Φ determines countable structure up to Lω1ω-elementary equivalence, then (a) is equivalent to (c′) for all , ⋀Φ → C is not valid.The requirement in 3.1 that Φ is A-Σ1 is essential when the set ω of all natural numbers is an element of A. For by the example of [2], then there is a set Φ LA sentences such that (b) holds and (a) fails; it is easier to show that, if ω ϵ A, there is a set Φ of LA sentences such that (c) holds and (b) fails.
Publisher
Cambridge University Press (CUP)
Reference4 articles.
1. Structures elementarily equivalent to models of high power relative to infinitary languages;Makkai;Notices of the American Mathematical Society,1969
2. Elementary extensions and uncountable models for infinitary finite-quantifier language fragments;Gregory;Notices of the American Mathematical Society,1970
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献