An example concerning Scott heights

Author:

Makkai M.

Abstract

Unless otherwise stated, every structure in this paper is countable in a countable, actually recursive language and every formula is one of .The definition of the so-called canonical Scott-sentence of a structure M, CSS(M) (compare Nadel [8]), is based on the ordinal invariant called the Scott-height of M, denoted SH(M) (compare Makkai [5]). To describe SH(M), let “bαα”, for finite tuples of equal lengths b and a of elements of M and any ordinal α, stand for “b and a satisfy (in M) the same formulas of quantifier-rank ≤ α” (for the quantifier rank of a formula, see e.g., Barwise [1]); also, let “ba” mean that there is an automorphism of M mapping b to a. With a fixed M, and a in M, sh(a) (or shM(a)) denotes the least ordinal α such that for all b in M, bαa implies ba. SH(M) is the least ordinal α such that for all a and b in M, bαa implies b ∼ a; hence SH(M) = sup{sh(a): a in M}.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE STRUCTURAL COMPLEXITY OF MODELS OF ARITHMETIC;The Journal of Symbolic Logic;2023-06-29

2. An Introduction to the Scott Complexity of Countable Structures and a Survey of Recent Results;The Bulletin of Symbolic Logic;2021-11-15

3. SCOTT COMPLEXITY OF COUNTABLE STRUCTURES;The Journal of Symbolic Logic;2021-02-01

4. Bounds on continuous Scott rank;Proceedings of the American Mathematical Society;2020-05-11

5. ASSIGNING AN ISOMORPHISM TYPE TO A HYPERDEGREE;The Journal of Symbolic Logic;2019-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3