A new autoregressive time series model in exponential variables (NEAR(1))

Author:

Lawrance A. J.,Lewis P. A. W.

Abstract

A new time series model for exponential variables having first-order autoregressive structure is presented. Unlike the recently studied standard autoregressive model in exponential variables (ear(1)), runs of constantly scaled values are avoidable, and the two parameter structure allows some adjustment of directional effects in sample path behaviour. The model is further developed by the use of cross-coupling and antithetic ideas to allow negative dependency. Joint distributions and autocorrelations are investigated. A transformed version of the model has a uniform marginal distribution and its correlation and regression structures are also obtained. Estimation aspects of the models are briefly considered.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference10 articles.

1. Testing for correlation between non-negative variates

2. On a stochastic difference equation and a representation of non-negative infinitely divisible random variables;Vervaat;Adv. Appl. Prob.,1979

3. Raftery A. E. (1980a) Un processus autoregressif à loi martingale exponentielle: propriétés asymptotiques et estimation de maximum de vraisemblance. Annales Scientifiques de l'Université de Clermont.

4. First-order autoregressive gamma sequences and point processes

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential stochastic volatility model with Laplace returns and its variants;Communications in Statistics - Simulation and Computation;2024-07-22

2. Zero-modified count time series with Markovian intensities;Journal of Statistical Planning and Inference;2024-03

3. Modeling multivariate positive‐valued time series using R‐INLA;Applied Stochastic Models in Business and Industry;2024-01-28

4. Exponential-Gaussian Distribution and Associated Time Series Models;REVSTAT-STAT J;2023

5. Nonparametric Control Charts for Monitoring Serial Dependence based on Ordinal Patterns;Technometrics;2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3