Modeling multivariate positive‐valued time series using R‐INLA

Author:

Dutta Chiranjit1,Ravishanker Nalini1,Basu Sumanta2

Affiliation:

1. Department of Statistics University of Connecticut Storrs Connecticut USA

2. Department of Statistics and Data Science Cornell University Ithaca New York USA

Abstract

AbstractIn this article, we describe fast Bayesian statistical analysis of vector positive‐valued time series, with application to interesting financial data streams. We discuss a flexible level correlated model (LCM) framework for building hierarchical models for vector positive‐valued time series. The LCM allows us to combine marginal gamma distributions for the positive‐valued component responses, while accounting for association among the components at a latent level. We introduce vector autoregression evolution of the latent states, deriving its precision matrix and enabling its estimation using integrated nested Laplace approximation (INLA) for fast approximate Bayesian modeling via the R‐INLA package, building custom functions to handle this setup. We use the proposed method to model interdependencies between intraday volatility measures from several stock indexes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3