Zermelo and the Skolem Paradox

Author:

Dalen Dirk Van,Ebbinghaus Heinz-Dieter

Abstract

On October 4, 1937, Zermelo composed a small note entitled “Der Relativismus in der Mengenlehre und der sogenannte Skolemsche Satz”(“Relativism in Set Theory and the So-Called Theorem of Skolem”) in which he gives a refutation of “Skolem's paradox”, i.e., the fact that Zermelo-Fraenkel set theory—guaranteeing the existence of uncountably many sets—has a countable model. Compared with what he wished to disprove, the argument fails. However, at a second glance, it strongly documents his view of mathematics as based on a world of objects that could only be grasped adequately by infinitary means. So the refutation might serve as a final clue to his epistemological credo.Whereas the Skolem paradox was to raise a lot of concern in the twenties and the early thirties, it seemed to have been settled by the time Zermelo wrote his paper, namely in favour of Skolem's approach, thus also accepting the noncategoricity and incompleteness of the first-order axiom systems. So the paper might be considered a late-comer in a community of logicians and set theorists who mainly followed finitary conceptions, in particular emphasizing the role of first-order logic (cf. [8]). However, Zermelo never shared this viewpoint: In his first letter to Gödel of September 21, 1931, (cf. [1]) he had written that the Skolem paradox rested on the erroneous assumption that every mathematically definable notion should be expressible by a finite combination of signs, whereas a reasonable metamathematics would only be possible after this “finitistic prejudice” would have been overcome, “a task I have made my particular duty”.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic;Studies in Logic, Grammar and Rhetoric;2021-12-01

2. A Finitely Axiomatized Non-Classical First-Order Theory Incorporating Category Theory and Axiomatic Set Theory;Axioms;2021-06-14

3. Von Dedekind zu Zermelo versus Peano zu Gödel;Mathematische Semesterberichte;2017-06-22

4. Proofs of CBT in Principia Mathematica;Proofs of the Cantor-Bernstein Theorem;2012-07-28

5. Zermelo’s 1908 Proof of CBT;Proofs of the Cantor-Bernstein Theorem;2012-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3