The stereological estimation of moments of particle volume

Author:

Jensen E. B.,Gundersen H. J. G.

Abstract

In stereology or applied geometric probability quantitative characterization of aggregates of particles from information on lower-dimensional sections plays a major role. Most stereological methods developed for particle aggregates are based on the assumption that the particles are of the same, known (simple) shape. Information on the volume-weighted distribution of particle size may, however, be obtained under fairly general assumptions about particle shape if particle volume is chosen as size parameter. In fact, there exists in this case an unbiased stereological estimator of the first moment under the sole assumption that the particles are convex. In the present paper, we consider a particle aggregate in ℝ and derive estimators of the q th moment of the volume-weighted distribution of particle volume, based on point-sampling of particles and measurements on q -flats through sampled particles. The estimators are valid for arbitrarily shaped particles but if the particles are non-convex it is necessary for the determination of the estimators to be able to identify the different separated parts on a q-flat through the particle aggregate which belong to the same particle. Explicit forms of the estimators are given for q = 1. For q = 2, an explicit form of one of the estimators is derived for an aggregate of triaxial ellipsoids in three-dimensional space.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An actuatable soft reservoir modulates host foreign body response;Science Robotics;2019-08-21

2. STEREOLOGY: A HISTORICAL SURVEY;Image Analysis & Stereology;2017-12-18

3. Journal of Applied Probability Volume 51 (2014): Index;Journal of Applied Probability;2014-12

4. Size and Shape of Nano-Grains in Polycrystals Subjected to SPD;Ultrafine Grained Materials II;2013-10-04

5. Flowers and wedges for the stereology of particles;Journal of Microscopy;2011-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3