Author:
Kanter Marek,Steiger W. L.
Abstract
The theory of the linear model is incomplete in that it fails to deal with variables possessing infinite variance. To fill an important part of this gap, we give an unbiased estimate, the “screened ratio estimate”, for λ in the regression E(X|Z) = λX; X and Z are linear combinations of independent, identically distributed symmetric random variables that are either stable or asymptotically Pareto distributed of index α ≤ 2. By way of comparison, the usual least squares estimate of λ is shown not to converge in general to any constant when α < 2. However, in the autoregression Xn = a1Xn-1 + … + akXn-k + Un, the least squares estimates are shown to be consistent as long as the roots of 1 - a1x2 - a2x2 - … - akxk = 0 are outside the complex unit circle, Xn is independent of Un+j,j ≥ 1, and the Un are independent and identically distributed and in the domain of attraction of a stable law of index a ≤ 2. Finally, the consistency of least squares estimates for finite moving averages is established.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference15 articles.
1. The L p Norm of Sums of Translates of a Function
2. Infinite variance and research strategy in time series;Granger;J. Amer. Statist. Assoc.,1972
3. Kanter M. and Steiger W. L. (1975) Sampling properties of some estimates for regression and autoregression with infinite variance. Submitted.
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献