Abstract
Certain limit theorems due to Berman involve the total time spent by Brownian motion with positive drift below an independent exponentially distributed level. Imhof has calculated the density function and shown that this random variable has two interesting probabilistic properties. We give sample path arguments which explain these two facts.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference8 articles.
1. Asymptotic Laws of Planar Brownian Motion
2. On the time spent above a level by Brownian motion with negative drift
3. Un probléme de réflexion et ses applications au temps local et aux equations différentielles stochastiques sur R: cas continu;El Karoui;Astérisque,1978
4. Doney R. A. (1989) Last exit times for random walks. Stoch. Proc. Appl.
5. Doney R. A. (in preparation) A path decomposition for Lévy processes.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献