Abstract
If X is a Brownian motion with drift and γ = inf{t > 0: Mt = t} we derive the joint density of the triple {U, γ, Δ}, where and Δ= γ —Xγ. In the case δ = 0 it follows easily from this that Δ has an Exp(2) distribution and this in turn implies the rather surprising result that if τ= inf{t > 0: Xt = Mt = t}, then Pr{τ = 0} = 0 and . We also derive various other distributional results involving the pair (X, M), including for example the distribution of ; in particular we show that, in case δ. = 1, when Pr{0 < τ < ∞} = 1, the ratio τ+/τ has the arc-sine distribution.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Lifetime of Excursions Through Random Walks and Lévy Processes;A Lifetime of Excursions Through Random Walks and Lévy Processes;2021
2. A path decomposition for Lévy processes;Stochastic Processes and their Applications;1993-09