A remark concerning decidability of complete theories

Author:

Janiczak Antoni

Abstract

A formalized theory is called complete if for each sentence expressible in this theory either the sentence itself or its negation is provable.A theory is called deciddble if there exists an effective procedure (called decision-procedure) which enables one to decide of each sentence, in a finite number of steps, whether or not it is provable in the theory.It is known that there exist complete but undecidable theories. There exist, namely, the so called essentially undecidable theories, i.e. theories which are undecidable and remain so after an arbitrary consistent extension of the set of axioms. Using the well-known method of Lindenbaum we can therefore obtain from each such theory a complete and undecidable theory.The aim of this paper is to prove a theorem which shows that complete theories satisfying certain very general conditions are always decidable. In somewhat loose formulation these conditions are: There exist four effective methods M1, M2, M3, M4, such that(a) M1 enables us to decide in each case whether or not any given formula is a sentence of the theory;(b) M2 gives an enumeration of all axioms of the theory;(c) the rules of inference can be arranged in a sequence R1, R2, … such that if p1, … pk, r are arbitrary sentences of the theory, we can decide by M3 whether or not r results from p1, … pk, by the n-th rule;(d) M4 enables us to construct effectively the negation of each effectively given sentence.In order to express these conditions more precisely we shall make use of an arithmetization of the considered theory .

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Core Gödel;Notre Dame Journal of Formal Logic;2023-02-01

2. La Logique Mathématique en sa jeunesse;Development of Mathematics 1900–1950;1994

3. Bibliography;Studies in Logic and the Foundations of Mathematics;1992

4. Kodifikation und Aussagenlogik;Archiv für Mathematische Logik und Grundlagenforschung;1969-03

5. Bibliography;Undecidable Theories;1953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3