Abstract
Suppose that n arcs with random lengths having distributions F1, F2, · ··, Fn are placed uniformly and independently on a circle. This paper presents inequalities which tell how certain distributions and probabilities change as the variability of the distributions Fl, F2, ··, Fn is increased. A distribution F is considered to be more variable than G if f h(x)dF(x) ≧ h(x)dG(x) for all convex functions h.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献