Author:
Jewell Nicholas P.,Romano Joseph P.
Abstract
Consider the placement of a finite number of arcs on the circle of circumference 2π where the midpoint and length of each arc follows an arbitrary bivariate distribution. In the case where each arc has lengthπ, the probability that the circle is completely covered is equal to the probability that the convex hull of a finite random sample of points, chosen according to a certain bivariate distribution in the plane contains the origin. In general, we show that evaluating the probability that the random convex hull contains a fixed disc is equivalent to solving the general coverage problem where the midpoint and length of each arc follows an arbitrary bivariate distribution. Exact formulae for the above probabilities are obtained and some examples are considered.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献