The rendezvous problem on discrete locations

Author:

Anderson E. J.,Weber R. R.

Abstract

Two friends have become separated in a building or shopping mall and and wish to meet as quickly as possible. There are n possible locations where they might meet. However, the locations are identical and there has been no prior agreement where to meet or how to search. Hence they must use identical strategies and must treat all locations in a symmetrical fashion. Suppose their search proceeds in discrete time. Since they wish to avoid the possibility of never meeting, they will wish to use some randomizing strategy. If each person searches one of the n locations at random at each step, then rendezvous will require n steps on average. It is possible to do better than this: although the optimal strategy is difficult to characterize for general n, there is a strategy with an expected time until rendezvous of less than 0.829 n for large enough n. For n = 2 and 3 the optimal strategy can be established and on average 2 and 8/3 steps are required respectively. There are many tantalizing variations on this problem, which we discuss with some conjectures.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Further Study on Weak Byzantine Gathering of Mobile Agents;Proceedings of the 25th International Conference on Distributed Computing and Networking;2024-01-04

2. Fast Marching Based Rendezvous Path Planning for a Team of Heterogeneous Vehicles;IEEE Access;2024

3. Almost Universal Anonymous Rendezvous in the Plane;Algorithmica;2023-05-11

4. On the Effect of Symmetry Requirement for Rendezvous on the Complete Graph;Mathematics of Operations Research;2023-05

5. Improving search for gasoline during a hurricane evacuation event using social media;EURO Journal on Transportation and Logistics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3