Abstract
This paper is a continuation of Daley (1969), referred to as (I), whose notation and numbering is continued here. We shall indicate various approaches to the study of the total waiting time in a busy period2 of a stable single-server queue with a Poisson arrival process at rate λ, and service times independently distributed with common distribution function (d.f.) B(·). Let X'i denote3 the total waiting time in a busy period which starts at an epoch when there are i (≧ 1) customers in the system (to be precise, the service of one customer is just starting and the remaining i − 1 customers are waiting for service). We shall find the first two moments of X'i, prove its asymptotic normality for i → ∞ when B(·) has finite second moment, and exhibit the Laplace-Stieltjes transform of X'i in M/M/1 as the ratio of two Bessel functions.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献